The Stability Region of CrO2 at High Temperature and
High Pressure and the Synthesis of Spinel-type Oxides Containing Cr4+
by Osamu FUKUNAGA, Akira SAWAOKA, Shinroku SAITO
(Discussion on the Artificial Minerals at Osaka in 1965)

Abstract

1. Stability region of CrO2

CrO₂ has been synthesized under high oxygen pressure by previous investigators. The authors found that CrO_2 was stable in the higher temperature range under solid pressure. The starting material of the runs was underfired CrO_3 whose composition was $\text{CrO}_2.5$. The apparatus used was a piston-cylinder type high pressure apparatus. The boundary curve between CrO_2 and Cr_2O_3 was given by the expression,

 $P(kb) = 7.4 + 0.019T(^{\circ}C)$

2. Synthesis of Me₂CrO₄

If spinels like $Me_2CrO_4(Me = Mg^{2+}, Ni^{2+}, Co^{2+})$ are satisfactorily synthesized, it is expected that Cr^{4+} ion may be contained in crystal. The results, however, were contradictory. With magnetic measurement, the curie point of Co_2CrO_4 was in accordance with that of $CoCr_2O_4$. The lattice constant of the former was 8.24A, while the latter 8.33 to 8.35A.